
Code Explanation

import time

import board

import busio

from adafruit_crickit import crickit

import adafruit_us100

• time → delay functions.

• board & busio → used to handle board pins and UART (serial communication).

• adafruit_crickit → control motors, servo, and sensors.

• adafruit_us100 → library for Ultrasonic sensor (US-100).

uart = busio.UART(board.TX, board.RX, baudrate=9600)

us100 = adafruit_us100.US100(uart)

• Connects the US-100 ultrasonic sensor via UART.

• Baud rate = 9600 bps (communication speed).

• us100.distance will give distance in centimeters.

servo = crickit.servo_1

servo.angle = 90 # Neutral

• A servo is connected to Servo port 1.

• Starts in the 90° neutral position.

ss = crickit.seesaw

ss.pin_mode(crickit.SIGNAL1, ss.INPUT_PULLUP) # Right sensor

ss.pin_mode(crickit.SIGNAL2, ss.INPUT_PULLUP) # Left sensor

• seesaw chip controls signals.

• SIGNAL1 = right IR sensor

• SIGNAL2 = left IR sensor

• INPUT_PULLUP = input mode with internal pull-up resistor.

left_motor = crickit.dc_motor_1

right_motor = crickit.dc_motor_2

• Defines left and right DC motors.

def stop():

 left_motor.throttle = 0

 right_motor.throttle = 0

 print("STOP")

def forward(speed=0.5):

 left_motor.throttle = speed

 right_motor.throttle = speed

 print("FORWARD")

def turn_left(speed=0.5):

 left_motor.throttle = 0

 right_motor.throttle = speed

 print("TURN LEFT")

def turn_right(speed=0.5):

 left_motor.throttle = speed

 right_motor.throttle = 0

 print("TURN RIGHT")

• Functions to control robot movement.

• Speed can be adjusted (default = 0.5).

def push_obstacle():

 print("PUSHING obstacle")

 servo.angle = 0 # Push forward

 time.sleep(0.5)

 servo.angle = 180 # Push backward

 time.sleep(0.5)

 servo.angle = 90 # Neutral

• Uses servo as a pusher/arm.

• Moves from 90° → 0° → 180° → back to 90°.

• Simulates pushing an obstacle out of the way.

while True:

 # Check ultrasonic distance

 try:

 distance = us100.distance

 if distance is not None and distance < 15:

 print("--obstacle detected", distance)

 state="stop"

 if state != last_state:

 last_state="stop"

 stop()

 push_obstacle()

 time.sleep(0.5)

 continue

 except RuntimeError:

 print("Ultrasonic read error")

• Reads ultrasonic sensor.

• If an object is closer than 10.5 cm →

• Robot stops,

• pushes obstacle using servo,

• waits 0.5s,

• then continues line following.

• If error occurs, prints "Ultrasonic read error".

 right_sensor = ss.digital_read(crickit.SIGNAL1) # Right IR

 left_sensor = ss.digital_read(crickit.SIGNAL2) # Left IR

• Reads IR sensor values:

• Black line = False (0)

• White surface = True (1)

 if not left_sensor and not right_sensor:

 state = "forward"

 elif left_sensor and not right_sensor:

 state = "turn_right"

 elif not left_sensor and right_sensor:

 state = "turn_left"

 else:

 state = "stop"

• Both black → go forward

• Left white, Right black → turn right

•

 if state != last_state:

• Avoids repeating the same command when robot keeps doing the same motion.

 if state == "forward":

 forward(0.3)

 elif state == "turn_right":

 turn_right(0.3)

 elif state == "turn_left":

 turn_left(0.3)

 elif state == "stop":

 stop()# both on white

• Executes the appropriate motion depending on state:

• forward(0.3) → moves straight

• turn_right(0.3) → rotates right

• turn_left(0.3) → rotates left

• stop() → stops both motors

 last_state = state

 time.sleep(0.01)

• Saves the current state for comparison in the next loop.

• Short pause for smooth execution.

