Code Explanation

INPUT_PULLUP)
.INPUT_PULLUP)

print(

turn_lef
left

-.throttle

print ("TURN LEFT™)

Action dictionar

last_state = "I

istance

20 .distance

print("--chstacle detected", distance)
state="stop"
state != last_state:
. last_state="stop"
stop()
time.sleep(8.5)
push_ohstacle()
time.sleep(8.5) # Pause hefore resuming

i Skip rest of loop to aveld immediate movement
RuntimeError:
print("Ultrasonic read error"

#Read IR sensors
right_sensor = ss.digital_read(right) # Right IR
left_sensor = ss.digital_read(left) & Left IR

Determine state
left_sensor right_sensor:
state = "forward"
left_sensor right_sensor:
state = "turn_right"
left_sensor right_sensor:
state = "turn_left"

state = "stop"

{ Execute only 1f state changed
state != last_state:
state == "forward":
forward(8.2)
state == "turn_right":
turn_right(8.2)
state == "turn_left™:
turn_left(@.2)
state == "stop":
. stop()# both on white
last_state = state
time.sleep(0.01)

import time

import board

import busio

from adafruit crickit import crickit

import adafruit usl00

uart

usl00

Servo

time — delay functions.

board & busio — used to handle board pins and UART (serial communication).

adafruit crickit — control motors, servo, and sensors.

adafruit us100 — library for Ultrasonic sensor (US-100).

= busio.UART (board.TX, board.RX, baudrate=

= adafruit usl00.0US100 (uart)
Connects the US-100 ultrasonic sensor via UART.
Baud rate = 9600 bps (communication speed).

us100.distance will give distance in centimeters.

= crickit.servo 1

servo.angle = 90 # Neutral

A servo is connected to Servo port 1.

Starts in the 90° neutral position.

Sss = crickit.seesaw

ss.pin mode (crickit.SIGNALl, ss.INPUT PULLUP)

ss.pin mode (crickit.SIGNALZ, ss.INPUT PULLUP)

seesaw chip controls signals.
SIGNALI = right IR sensor
SIGNAL?2 = left IR sensor

INPUT PULLUP = input mode with internal pull-up resistor.

left motor = crickit.dc motor 1

9600)

Right sensor

Left sensor

right motor = crickit.dc motor 2

* Defines left and right DC motors.
def stop() :
left motor.throttle = 0
right motor.throttle = 0
print ("STOP")
def forward (speed=0.5) :
left motor.throttle = speed
right motor.throttle = speed
print ("FORWARD")
def turn left (speed=0.5):
left motor.throttle = 0
right motor.throttle = speed
print ("TURN LEFT")
def turn right (speed=0.5):
left motor.throttle = speed
right motor.throttle = 0

print ("TURN RIGHT")

Functions to control robot movement.

Speed can be adjusted (default = 0.5).

def push obstacle():

print ("PUSHING obstacle")
servo.angle = 0 # Push forward
time.sleep(0.5)

servo.angle = 180 # Push backward
time.sleep(0.5)

servo.angle = 90 # Neutral

» Uses servo as a pusher/arm.
* Moves from 90° — 0° — 180° — back to 90°.
* Simulates pushing an obstacle out of the way.
while True:
Check ultrasonic distance
try:
distance = usl00.distance
if distance is not None and distance < 15:
print ("--obstacle detected", distance)
state="stop"
if state != last state:
last state="stop"
stop ()
push obstacle ()
time.sleep (0.5)
continue
except RuntimeError:
print ("Ultrasonic read error")
* Reads ultrasonic sensor.
» Ifan object is closer than 10.5 cm —
* Robot stops,
* pushes obstacle using servo,
e waits 0.5s,
* then continues line following.
 Iferror occurs, prints "Ultrasonic read error".
right sensor = ss.digital read(crickit.SIGNAL1l) # Right IR

left sensor = ss.digital read(crickit.SIGNALZ) # Left IR

* Reads IR sensor values:
* Black line = False (0)
* White surface = True (1)
if not left sensor and not right sensor:
state = "forward"
elif left sensor and not right sensor:
state = "turn right"

elif not left sensor and right sensor:

state = "turn left"
else:

state = "stop"
* Both black — go forward

» Left white, Right black — turn right

if state != last state:

* Avoids repeating the same command when robot keeps doing the same motion.
if state == "forward":
forward (0. 3)
elif state == "turn right":
turn right (0.3)
elif state == "turn left":
turn_left (0.3)
elif state == "stop":

stop () # both on white

* Executes the appropriate motion depending on state:

e forward(0.3) — moves straight

e turn right (0.3) — rotates right
 turn left (0.3) — rotates left

* stop () — stops both motors

last state = state

time.sleep (0.01)
» Saves the current state for comparison in the next loop.

* Short pause for smooth execution.

